数据中的价值
现实情况是,硬件访问真正有价值的东西——数据,特别是真实世界的数据。这些数据将训练神经网络模型,使自动驾驶汽车成为可能。格兰特举了一个汽车的例子,系统相信它遇到了一辆“飞行自行车”。在分析这些数据时,汽车看到的是挂在自行车架上的自行车,但由于汽车相信看到一辆"飞行自行车"之前,还没有遇到过这种情况。一旦受过训练,将其添加到训练模型,每辆车都将了解这是什么。
布鲁姆认为:“自动驾驶的真正诀窍是收集数据。这是获胜的关键。市场上的汽车越多,收集的场景和情况的数据就越多,获胜的机会就越大。”他还举例说明算法如何从经验中学习,从而改善每个人的驾驶体验。他举的例子是特斯拉在自动驾驶模式时,行进中反复轻微制动,但这会引发乘客的不安。这是因为算法检测到其它车道上的汽车在轻微漂移,就像一个紧张的新司机,系统过度使用刹车,随着理解数据系统学习如何改进。
关于数据的另一个问题是谁拥有数据?自动驾驶汽车将产生大量数据,其中很大一部分将提供汽车所在位置,及其行驶速度。但是这些数据属于自动系统供应商、汽车制造商还是车主?甚至该如何定义车主?自动驾驶汽车将迎来拼车服务,如创新型初创企业Cruise正在拓展的业务,这将对汽车的所有权性质产生深远的影响。
数据中的价值
现实情况是,硬件访问真正有价值的东西——数据,特别是真实世界的数据。这些数据将训练神经网络模型,使自动驾驶汽车成为可能。格兰特举了一个汽车的例子,系统相信它遇到了一辆“飞行自行车”。在分析这些数据时,汽车看到的是挂在自行车架上的自行车,但由于汽车相信看到一辆"飞行自行车"之前,还没有遇到过这种情况。一旦受过训练,将其添加到训练模型,每辆车都将了解这是什么。
布鲁姆认为:“自动驾驶的真正诀窍是收集数据。这是获胜的关键。市场上的汽车越多,收集的场景和情况的数据就越多,获胜的机会就越大。”他还举例说明算法如何从经验中学习,从而改善每个人的驾驶体验。他举的例子是特斯拉在自动驾驶模式时,行进中反复轻微制动,但这会引发乘客的不安。这是因为算法检测到其它车道上的汽车在轻微漂移,就像一个紧张的新司机,系统过度使用刹车,随着理解数据系统学习如何改进。
关于数据的另一个问题是谁拥有数据?自动驾驶汽车将产生大量数据,其中很大一部分将提供汽车所在位置,及其行驶速度。但是这些数据属于自动系统供应商、汽车制造商还是车主?甚至该如何定义车主?自动驾驶汽车将迎来拼车服务,如创新型初创企业Cruise正在拓展的业务,这将对汽车的所有权性质产生深远的影响。
举报