STM32
直播中

h1654155275.5614

8年用户 730经验值
私信 关注
[问答]

如何对STM32F103定时器中断优先级进行配置呢

STM32F103基本定时器可分为哪几类呢?

如何对STM32F103定时器中断优先级进行配置呢?



回帖(1)

李帅

2021-11-23 12:07:52
  STM32F103基本定时器
  定时器分类
  STM32F1 系列中,除了互联型的产品,有 8 个定时器,分为基本定时器,通用定时器和高级定时器。
  基本定时器 TIM6 和 TIM7是一个 16 位的只能向上计数的定时器,只能定时,没有外部 IO。
  通用定时器 TIM2/3/4/5 是一个 16位的可以向上/下计数的定时器,可以定时,可以输出比较,可以输入捕捉,每个定时器有四个外部 IO。
  高级定时器 TIM1/8是一个16位的可以向上/下计数的定时器,可以定时,可以输出比较,可以输入捕捉,还可以有三相电机互补输出信号,每个定时器有 8 个外部 IO。
  
  基本定时器功能框图
  基本定时器的核心是时基,不仅基本定时器有,通用定时器和高级定时器也有。学习定时器时,我们先从简单的基本定时器学起,到了后面的通用和高级定时器的学习中,我们直接跳过时基部分的讲解即可。
  
  1.①时钟源
  定时器时钟 TIMxCLK,即内部时钟 CK_INT,经 APB1 预分频器后分频提供,如果APB1 预分频系数等于 1,则频率不变,否则频率乘以 2,库函数中 APB1 预分频的系数是 2,即 PCLK1=36M,所以定时器时钟 TIMxCLK=36*2=72M。
  2. ②计数器时钟
  定时器时钟经过 PSC 预分频器之后,即 CK_CNT,用来驱动计数器计数。PSC 是一个16 位的预分频器,可以对定时器时钟 TIMxCLK 进行 1~65536 之间的任何一个数进行分频。具体计算方式为:CK_CNT=TIMxCLK/(PSC+1)。
  3. ③计数器
  计数器 CNT 是一个 16 位的计数器,只能往上计数,最大计数值为65535。当计数达到自动重装载寄存器的时候产生更新事件,并清零从头开始计数。
  4. ④自动重装载寄存器
  自动重装载寄存器 ARR 是一个 16 位的寄存器,这里面装着计数器能计数的最大数值。当计数到这个值的时候,如果使能了中断的话,定时器就产生溢出中断。
  5. 定时时间的计算
  定时器的定时时间等于计数器的中断周期乘以中断的次数。计数器在 CK_CNT 的驱动下,计一个数的时间则是 CK_CLK 的倒数,等于:1/(TIMxCLK/(PSC+1)),产生一次中断的时间则等于:1/(CK_CLK * ARR)。如果在中断服务程序里面设置一个变量 time,用来 记 录 中 断的 次 数,那 么 就 可 以计 算 出我们 需 要 的 定时 时 间等于 :1/CK_CLK *(ARR+1)*time。
  定时器初始化结构体详解
  在标准库函数头文件 stm32f1xx_tim.h 中对定时器外设建立了四个初始化结构体,基本定时器只用到其中一个即 TIM_TimeBaseInitTypeDef。
  typedef struct
  {
  uint16_t TIM_Prescaler; // 预分频器
  uint16_t TIM_CounterMode; // 计数模式
  uint32_t TIM_Period; // 定时器周期
  uint16_t TIM_ClockDivision; // 时钟分频
  uint8_t TIM_RepetitionCounter; // 重复计算器
  }
  TIM_TimeBaseInitTypeDef;
  (1) TIM_Prescaler:定时器预分频器设置,时钟源经该预分频器才是定时器时钟,它设定TIMx_PSC 寄存器的值。可设置范围为 0 至 65535,实现 1 至 65536 分频。
  (2) TIM_CounterMode:定时器计数方式,可是在为向上计数、向下计数以及三种中心对齐模式。基本定时器只能是向上计数,即 TIMx_CNT 只能从 0 开始递增,并且无需初始化。
  (3) TIM_Period:定时器周期,实际就是设定自动重载寄存器的值,在事件生成时更新到影子寄存器。可设置范围为 0 至 65535。
  (4) TIM_ClockDivision:时钟分频,设置定时器时钟 CK_INT 频率与数字滤波器采样时钟频率分频比,基本定时器没有此功能,不用设置。
  (5) TIM_RepetitionCounter:重复计数器,属于高级控制寄存器专用寄存器位,利用它可以非常容易控制输出 PWM 的个数。这里不用设置。
  虽然定时器基本初始化结构体有 5 个成员,但对于基本定时器只需设置其中两个就可以,想想使用基本定时器就是简单。
  基本定时器定时实验
  硬件设计
  利用基本定时器 TIM6/7 定时 1s,1s 时间到 LED 翻转一次。基本定时器是单片机内部的资源,没有外部 IO,只需要一个 LED 。
  软件设计
  这里只讲解核心的部分代码,有些变量的设置,头文件的包含等并没有涉及到。我们编写两个定时器驱动文件,bTiMbase.h 和TiMbase.h,用来配置定时器中断优先级和和初始化定时器。
  编程要点
  (1) 开定时器时钟 TIMx_CLK, x[6,7];
  (2) 初始化时基初始化结构体;
  (3) 使能 TIMx, x[6,7] update 中断;
  (4) 打开定时器;
  (5) 编写中断服务程序
  通用定时器和高级定时器的定时编程要点跟基本定时器差不多,只是还要再选择下计数器的计数模式,是向上还是向下。因为基本定时器只能向上计数,且没有配置计数模式的寄存器,默认是向上。
  软件分析
  基本定时器宏定义
  /*********************基本定时器 TIM 参数定义,只限 TIM6、7************/
  #define BASIC_TIM6 // 如果使用TIM7注释掉这个宏定义
  #ifdef BASIC_TIM6 // 使用TIM6
  #define BASIC_TIM TIM6
  #define BASIC_TIM_APBxClock_FUN RCC_APB1PeriphClockCmd
  #define BASIC_TIM_CLK RCC_APB1Periph_TIM6
  #define BASIC_TIM_IRQ TIM6_IRQn
  #define BASIC_TIM_IRQHandler TIM6_IRQHandler
  #else#define BASIC_TIM TIM7
  #define BASIC_TIM_APBxClock_FUN RCC_APB1PeriphClockCmd
  #define BASIC_TIM_CLK RCC_APB1Periph_TIM7
  #define BASIC_TIM_IRQ TIM7_IRQn
  #define BASIC_TIM_IRQHandler TIM7_IRQHandler
  #endif
  基本定时器有 TIM6 和 TIM7,我们可以有选择的使用,为了提高代码的可移植性,我们把当需要修改定时器时需要修改的代码定义成宏,默认使用的是定时器 6,如果想修改成定时器 7,只需要把宏 BASIC_TIM6 注释掉即可。
  基本定时器配置
  /*============================================================================== *
  函 数 名: TIMx_Config(void) *
  功能描述: TIMx,x[6,7]中断配置 *
  调用方法:===============================================================================*/
  void BASIC_TIM_Config(void)
  {
  TIM_TimeBaseInitTypeDef
  TIM_TimeBaseStructure;
  BASIC_TIM_APBxClock_FUN(BASIC_TIM_CLK, ENABLE);
  //开启TIMx_CLK,x[6,7],即内部时钟CK_INT=72M
  TIM_TimeBaseStructure.
  TIM_Period=1000;
  //自动重装载寄存器周的值(计数值)
  //累计 TIM_Period个频率后产生一个更新或者中断
  TIM_TimeBaseStructure.
  TIM_Prescaler= 71;
  //时钟预分频数为71,则驱动计数器的时钟CK_CNT = CK_INT / (71+1)=1M
  // 时钟分频因子 ,基本定时器没有用到,不用管
  //TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;
  // 计数器计数模式,基本定时器只能向上计数,没有计数模式的设置
  //TIM_TimeBaseStructure.
  TIM_CounterMode=TIM_CounterMode_Up;
  // 重复计数器的值,基本定时器没有,不用管
  //TIM_TimeBaseStructure.
  TIM_RepetitionCounter=0;
  TIM_TimeBaseInit(BASIC_TIM, &TIM_TimeBaseStructure);
  //初始化定时器TIMx, x[6,7]
  TIM_ClearFlag(BASIC_TIM, TIM_FLAG_Update);
  //清除计数器中断标志位
  TIM_ITConfig(BASIC_TIM,TIM_IT_Update,ENABLE);
  //开启计数器中断
  TIM_Cmd(BASIC_TIM, ENABLE);
  //使能计数器
  //暂时关闭TIMx,x[6,7]的时钟,等待使用
  BASIC_TIM_APBxClock_FUN (BASIC_TIM_CLK, DISABLE);
  }
  我们把定时器设置自动重装载寄存器 ARR 的值为 1000,设置时钟预分频器为 71,则驱动计数器的时钟:CK_CNT = CK_INT / (71+1)=1M,则计数器计数一次的时间等于:1/CK_CNT=1us,当计数器计数到 ARR 的值 1000 时,产生一次中断,则中断一次的时间为:1/CK_CNT*ARR=1ms。在初始化定时器的时候,我们定义了一个结构体:TIM_TimeBaseInitTypeDef,TIM_TimeBaseInitTypeDef 结构体里面有 5 个成员,TIM6 和 TIM7 的寄存器里面只有TIM_Prescaler 和 TIM_Period,另外三个成员基本定时器是没有的,所以使用 TIM6 和TIM7 的时候只需初始化这两个成员即可, 另外三个成员是通用定时器和高级定时器才有。
  定时器中断优先级配置
  /*==============================================================================*
  函 数 名: BASIC_TIM_NVIC_Config(void)*
  功能描述: TIMx,x[6,7]中断优先级配置*
  调用方法:===============================================================================*/
  void BASIC_TIM_NVIC_Config(void)
  {
  NVIC_InitTypeDef NVIC_InitStructure;
  // 设置中断组为0
  NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);
  // 设置中断来源
  NVIC_InitStructure.NVIC_IRQChannel = BASIC_TIM_IRQ;
  // 设置主优先级为 0
  NVIC_InitStructure.
  NVIC_IRQChannelPreemptionPriority = 0;
  // 设置抢占优先级为3
  NVIC_InitStructure.
  NVIC_IRQChannelSubPriority = 3;
  NVIC_InitStructure.
  NVIC_IRQChannelCmd = ENABLE;
  NVIC_Init(&NVIC_InitStructure);
  }
  我们设置中断分组为 0,主优先级为 0,抢占优先级为 3。
  定时器中断服务程序
  void BASIC_TIM_IRQHandler (void)
  {
  if ( TIM_GetITStatus( BASIC_TIM, TIM_IT_Update) != RESET )
  {
  time++;
  TIM_ClearITPendingBit(BASIC_TIM , TIM_FLAG_Update);
  }
  }
  定时器中断一次的时间是 1ms,我们定义一个全局变量 time,每当进一次中断的
  时候,让 time 来记录进入中断的次数。如果我们想实现一个 1s 的定时,我们只需要判断 time 是否等于 1000 即可,1000 个 1ms 就是 1s。然后把 time 清 0,重新计数,以此循环往复。在中断服务程序的最后,要把相应的中断标志位清除掉。
  主函数
  int main(void)
  {
  /* led 端口配置 */
  LED_GPIO_Config();
  /* 基本定时器 TIMx,x[6,7] 定时配置 */
  BASIC_TIM_Config();
  /* 配置基本定时器 TIMx,x[6,7]的中断优先级 */
  BASIC_TIM_NVIC_Config();
  /* 基本定时器 TIMx,x[6,7] 重新开时钟,开始计时 */
  BASIC_TIM_APBxClock_FUN(BASIC_TIM_CLK, ENABLE);
  while (1)
  {
  if ( time == 1000 ) /* 1000 * 1 ms = 1s 时间到 */
  {
  time = 0;
  /* LED1 取反 */
  LED1_TOGGLE;
  }
  }
  }
  主函数做一些必须的初始化,然后在一个死循环中不断的判断 time 的值,time 的值在定时器中断改变,每加一次表示定时器过了 1ms,当 time 等于 1000 时,1s 时间到,LED1翻转一次,并把 time 清 0。
举报

更多回帖

发帖
×
20
完善资料,
赚取积分