下面是计算ADC转换结果的电流的方程式
可测量输入电流:4mA
差分放大器增益:10
ADC供电电压:5V
RS值
多路复用器输入端电压
ADC输入电压范围
Mv /8位分辨率ADC计数
16位分辨率ADC计数
50E, 0.01%
0.2V
2V
7.8mV
30µV
100E, 0.01%
0.4V
4V
15.62mV
61µV
电流I可以从ADC读数计算出结果:
电流I=(电压计数 x(mv /计数)/电阻)/放大器增益
市场上有相当数量的微处理器具备片上ADC,并且可以在运行时通过固件进行配置。ADC应该满足使用要求,具备适当的输入电压范围,满足操作要求、分辨率、增益控制等。如果ADC是差分的,能控制的增益到输入信号,那么图中的差分放大器也可以不用。
微处理器系统具有运行时可配置的定时器。定时器可以设置为在一个特定的时间间隔产生中断。这些中断是用来中断微处理器并连接所需的多路复用器输入通道到输出。读出ADC转换结果读数、处理实测数据然后储存在memory或传输到PC进行数据分析。通过改变计时器周期,可以很容易地变化监控每个通道的时间。如果只监控一个通道,只需在选定所需监控通道后关掉定时器中断即可。
下面这种情况必须十分小心,当通过多路复用器从一个频道切换到另一个频道时,这时候ADC仍在处理转换,那么可能会导致不准确的测量。理想的方法就先停止ADC,清除之前任何转换结果,然后再切换到所期望的输入通道,之后ADC就可以重新运行了。
通常应用一般要求信号尽可能快地发送,这基于多路复用器的开关时间(例如:复用器从一个通道切换到另一个通道所花的时间),这个时间应该尽可能小,因为长时间的切换可能导致信号损失。所有的多路复用器应该在建立新连接之前断掉,这是为了避免与之前通道的信号发生短路。
下面是计算ADC转换结果的电流的方程式
可测量输入电流:4mA
差分放大器增益:10
ADC供电电压:5V
RS值
多路复用器输入端电压
ADC输入电压范围
Mv /8位分辨率ADC计数
16位分辨率ADC计数
50E, 0.01%
0.2V
2V
7.8mV
30µV
100E, 0.01%
0.4V
4V
15.62mV
61µV
电流I可以从ADC读数计算出结果:
电流I=(电压计数 x(mv /计数)/电阻)/放大器增益
市场上有相当数量的微处理器具备片上ADC,并且可以在运行时通过固件进行配置。ADC应该满足使用要求,具备适当的输入电压范围,满足操作要求、分辨率、增益控制等。如果ADC是差分的,能控制的增益到输入信号,那么图中的差分放大器也可以不用。
微处理器系统具有运行时可配置的定时器。定时器可以设置为在一个特定的时间间隔产生中断。这些中断是用来中断微处理器并连接所需的多路复用器输入通道到输出。读出ADC转换结果读数、处理实测数据然后储存在memory或传输到PC进行数据分析。通过改变计时器周期,可以很容易地变化监控每个通道的时间。如果只监控一个通道,只需在选定所需监控通道后关掉定时器中断即可。
下面这种情况必须十分小心,当通过多路复用器从一个频道切换到另一个频道时,这时候ADC仍在处理转换,那么可能会导致不准确的测量。理想的方法就先停止ADC,清除之前任何转换结果,然后再切换到所期望的输入通道,之后ADC就可以重新运行了。
通常应用一般要求信号尽可能快地发送,这基于多路复用器的开关时间(例如:复用器从一个通道切换到另一个通道所花的时间),这个时间应该尽可能小,因为长时间的切换可能导致信号损失。所有的多路复用器应该在建立新连接之前断掉,这是为了避免与之前通道的信号发生短路。
举报